Multi-Objective Portfolio Optimization Using a Quantum Annealer

Author:

Aguilera Esteban1,de Jong Jins1,Phillipson Frank12ORCID,Taamallah Skander3ORCID,Vos Mischa3

Affiliation:

1. TNO, P.O. Box 96800, 2509 JE The Hague, The Netherlands

2. School of Business and Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

3. Rabobank, P.O. Box 17100, 3500 HG Utrecht, The Netherlands

Abstract

In this study, the portfolio optimization problem is explored, using a combination of classical and quantum computing techniques. The portfolio optimization problem with specific objectives or constraints is often a quadratic optimization problem, due to the quadratic nature of, for example, risk measures. Quantum computing is a promising solution for quadratic optimization problems, as it can leverage quantum annealing and quantum approximate optimization algorithms, which are expected to tackle these problems more efficiently. Quantum computing takes advantage of quantum phenomena like superposition and entanglement. In this paper, a specific problem is introduced, where a portfolio of loans need to be optimized for 2030, considering ‘Return on Capital’ and ‘Concentration Risk’ objectives, as well as a carbon footprint constraint. This paper introduces the formulation of the problem and how it can be optimized using quantum computing, using a reformulation of the problem as a quadratic unconstrained binary optimization (QUBO) problem. Two QUBO formulations are presented, each addressing different aspects of the problem. The QUBO formulation succeeded in finding solutions that met the emission constraint, although classical simulated annealing still outperformed quantum annealing in solving this QUBO, in terms of solutions close to the Pareto frontier. Overall, this paper provides insights into how quantum computing can address complex optimization problems in the financial sector. It also highlights the potential of quantum computing for providing more efficient and robust solutions for portfolio management.

Funder

Rabobank and Stichting TKI High Tech Systems and Materials

Publisher

MDPI AG

Reference53 articles.

1. Markowitz, H. (2009). Harry Markowitz: Selected Works, World Scientific.

2. Radulescu, M., and Radulescu, C.Z. (2018). Financial Decision Aid Using Multiple Criteria, Springer.

3. Robust multiobjective portfolio optimization: A minimax regret approach;Xidonas;Eur. J. Oper. Res.,2017

4. Skaf, J., and Boyd, S. (2024, March 20). Multi-Period Portfolio Optimization with Constraints and Transaction Costs. Available online: https://web.stanford.edu/~boyd/papers/pdf/dyn_port_opt.pdf.

5. Multi-period mean–variance fuzzy portfolio optimization model with transaction costs;Liagkouras;Eng. Appl. Artif. Intell.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3