Uncovering Patterns in Dairy Cow Behaviour: A Deep Learning Approach with Tri-Axial Accelerometer Data

Author:

Balasso Paolo1,Taccioli Cristian1ORCID,Serva Lorenzo1ORCID,Magrin Luisa1ORCID,Andrighetto Igino1ORCID,Marchesini Giorgio1ORCID

Affiliation:

1. Dipartimento di Medicina Animale, Produzioni e Salute, Università degli Studi di Padova, 35020 Legnaro, Italy

Abstract

The accurate detection of behavioural changes represents a promising method of detecting the early onset of disease in dairy cows. This study assessed the performance of deep learning (DL) in classifying dairy cows’ behaviour from accelerometry data acquired by single sensors on the cows’ left flanks and compared the results with those obtained through classical machine learning (ML) from the same raw data. Twelve cows with a tri-axial accelerometer were observed for 136 ± 29 min each to detect five main behaviours: standing still, moving, feeding, ruminating and resting. For each 8 s time interval, 15 metrics were calculated, obtaining a dataset of 211,720 observation units and 15 columns. The entire dataset was randomly split into training (80%) and testing (20%) datasets. The DL accuracy, precision and sensitivity/recall were calculated and compared with the performance of classical ML models. The best predictive model was an 8-layer convolutional neural network (CNN) with an overall accuracy and F1 score equal to 0.96. The precision, sensitivity/recall and F1 score of single behaviours had the following ranges: 0.93–0.99. The CNN outperformed all the classical ML algorithms. The CNN used to monitor the cows’ conditions showed an overall high performance in successfully predicting multiple behaviours using a single accelerometer.

Funder

sity of Padova

Smart Unipd

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3