Energy-Saving Load Control of Induction Electric Motors for Drives of Working Machines to Reduce Thermal Wear

Author:

Al-Quraan Tareq M. A.ORCID,Vovk Oleksandr,Halko Serhii,Kvitka Serhii,Suprun OlenaORCID,Miroshnyk OleksandrORCID,Nitsenko VitaliiORCID,Zayed Nurul MohammadORCID,Islam K. M. AnwarulORCID

Abstract

The influence of reduced voltage on the service life of an induction motor is considered in this article. An algorithm for calculating the rate of thermal wear of induction motor insulation under reduced supply voltage depending on the load and the mechanical characteristics of the working machine has been developed. It determines the change in the rate of thermal wear under alternating external effects on the motor (supply voltage and load) and allows forecasting its service life under these conditions. The dependency graphs of the rate of insulation thermal wear on the motor load for various levels of supply voltage and various mechanical characteristics of working machines are provided in the work. It was determined that the rate of thermal wear of the induction motor insulation increases significantly when the voltage is reduced compared to its nominal value with nominal load on the motor. The authors propose to consider this fact for resource-saving control of the motor. The paper presents the results of experimental verification of the obtained rule for “Asynchronous Interelectro” (AI) series electric motors that confirm its accuracy. Based on the obtained correlation, the rule of voltage regulation in energy-saving operation mode has been derived. The proposed rule takes into account the thermal impact on the electric motor running in energy-saving mode and enables saving its resource, which, in turn, results in extending its service life. The research does not consider additional effects on the electric motor except the thermal one.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3