Change Point Detection for Diversely Distributed Stochastic Processes Using a Probabilistic Method

Author:

Khan Muhammad RizwanORCID,Sarkar BiswajitORCID

Abstract

Unpredicted deviations in time series data are called change points. These unexpected changes indicate transitions between states. Change point detection is a valuable technique in modeling to estimate unanticipated property changes underlying time series data. It can be applied in different areas like climate change detection, human activity analysis, medical condition monitoring and speech and image analyses. Supervised and unsupervised techniques are equally used to identify changes in time series. Even though change point detection algorithms have improved considerably in recent years, several undefended challenges exist. Previous work on change point detection was limited to specific areas; therefore, more studies are required to investigate appropriate change point detection techniques applicable to any data distribution to assess the numerical productivity of any stochastic process. This research is primarily focused on the formulation of an innovative methodology for change point detection of diversely distributed stochastic processes using a probabilistic method with variable data structures. Bayesian inference and a likelihood ratio test are used to detect a change point at an unknown time (k). The likelihood of k is determined and used in the likelihood ratio test. Parameter change must be evaluated by critically analyzing the parameters expectations before and after a change point. Real-time data of particulate matter concentrations at different locations were used for numerical verification, due to diverse features, that is, environment, population densities and transportation vehicle densities. Therefore, this study provides an understanding of how well this recommended model could perform for different data structures.

Publisher

MDPI AG

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3