Characterization of Pig Vertebrae under Axial Compression Integrating Radiomic Techniques and Finite Element Analysis

Author:

Hernández-Salazar Cristian A.1,Chamorro Camilo E.1,González-Estrada Octavio A.1ORCID

Affiliation:

1. School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga 680002, Colombia

Abstract

The study of pig bones, due to their similarity with human tissues, has facilitated the development of technological tools that help in the diagnosis of diseases and injuries affecting the skeletal system. Radiomic techniques involving medical image segmentation, along with finite element analysis, enable the detailed study of bone damage, loss of density, and mechanical functionality, which is a significant advancement in personalized medicine. This study involves conducting experimental tests on L3–L6 pig vertebrae under axial loading conditions. The mechanical properties of these vertebrae are analyzed, and the maximum loads they can sustain within the elastic range are determined. Additionally, three-dimensional models are generated by segmenting computerized axial tomography (CAT) scans of the vertebrae. Digital shadows of the vertebrae are constructed by assigning an anisotropic material model to the segmented geometries. Then, finite element analysis is performed to evaluate the elastic characteristics, stress, and displacement. The findings from the experimental data are then compared to the numerical model, revealing a strong correlation with differences of less than 0.8% in elastic modulus and 1.53% in displacement. The proposed methodology offers valuable support in achieving more accurate medical outcomes, employing models that serve as a diagnostic reference. Moreover, accurate bone modeling using finite element analysis provides valuable information to understand how implants interact with the surrounding bone tissue. This information is useful in guiding the design and optimization of implants, enabling the creation of safer, more durable, and biocompatible medical devices that promote optimal osseointegration and healing in the patient.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3