Experimental Investigation into the Performance of PEMFCs with Three Different Hydrogen Recirculation Schemes

Author:

Li Kejing12,Wang Chen12,Li Jingjing3,Wang Lei12ORCID,Li Zongji3,Zhang Chuanlong3

Affiliation:

1. School of Control Science and Engineering, Shandong University, Jinan 250061, China

2. Centre for Hydrogen Energy, Shandong University, Jinan 250061, China

3. Weichai Power Co., Ltd., Weifang 261061, China

Abstract

Hydrogen recirculation systems (HRSs) are vital components of proton exchange membrane fuel cells (PEMFCs), and it is necessary to investigate different HRS schemes to meet the needs of high-power PEMFCs. PEMFCs are developing in the direction of low cost, high power, wide working conditions, low noise, compact structure, etc. Currently, it is difficult for hydrogen recirculation pumps (HRPs) to meet the flow requirements of high-power PEMFCs. HRPs inevitably have high parasitic energy consumption, loud noise output, high cost, easy leakage, and high failure rates. Therefore, it is necessary to study different HRS schemes to develop a better solution for high-power PEMFCs. In this study, the functional prototype of a piping and instrumentation diagram (P&ID) based on three HRSs of HRPs was designed, and a functional prototype was built. Working according to the analysis and comparison of PEMFC performance test data, we find that the net power trend of PEMFC systems using three different HRS technology schemes is consistent. The ejector scheme and the combination scheme do not reduce the performance of PEMFCs and have advantages in different power ranges, such as 24 A, 48 A, and other small current points. The PEFMC system net power order is as follows: ejector scheme > HRP scheme > combination scheme. At about 120 A, the net power outputs of the three HRS schemes in the PEMFC system coincide. From around 180 A onwards, the PEMFC system power of the combined HRS scheme gradually dominates. At 320 A, the PEFMC system net power order is as follows: combined HRS scheme > HRP scheme > ejector scheme.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Shandong Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3