Low-Cost Systematic Methodology for Rapidly Constructing a Physiological Monitoring Interface in ICU

Author:

Lin Ke-Feng12ORCID,Lin Shih-Sung3,Chen Ping-Nan4ORCID

Affiliation:

1. Medical Informatics Office, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan

2. School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan

3. Department of Computer Science and Information Engineering, Chinese Culture University, Taipei 11114, Taiwan

4. Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan

Abstract

During the COVID-19 pandemic, which emerged in 2020, many patients were treated in isolation wards because of the high infectivity and long incubation period of COVID-19. Therefore, monitoring systems have become critical to patient care and to safeguard medical professional safety. The user interface is very important to the surveillance system; therefore, we used web technology to develop a system that can create an interface based on user needs. When the surveillance scene needs to be changed, the surveillance location can be changed at any time, effectively reducing the costs and time required, so that patients can achieve timely and appropriate goals of treatment. ZigBee was employed to develop a monitoring system for intensive care units (ICUs). Unlike conventional GUIs, the proposed GUI enables the monitoring of various aspects of a patient, and the monitoring interface can be modified according to the user needs. A simulated ICU environment monitoring system was designed to test the effectiveness of the system. The simulated environment and monitoring nodes were set up at positions consistent with the actual clinical environments to measure the time required to switch between the monitoring scenes or targets on the GUI. A novel system that can construct ZigBee-simulated graphical monitoring interfaces on demand was proposed in this study. The locations of the ZigBee monitoring nodes in the user interface can be changed at any time. The time required to deploy the monitoring system developed in this study was 4 min on average, which is much shorter than the time required for conventional methods (131 min). The system can effectively overcome the limitations of the conventional design methods for monitoring interfaces. This system can be used to simultaneously monitor the basic physiological data of numerous patients, enabling nursing professionals to instantly determine patient status and provide appropriate treatments. The proposed monitoring system can be applied to remote medical care after official adoption.

Funder

Ministry of National Defense-Medical Affairs Bureau

Tri-Service General Hospital

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3