The Conceptual Synthesis and Development of a Multifunctional Lawnmower

Author:

Kang Chun Quan,Ng Poh Kiat,Liew Kia Wai

Abstract

This study aims to develop a novel, original and multifunctional lawnmower through reviews of patent literature, research literature and variants of existing lawnmowers. After a detailed conceptualisation process, Autodesk Inventor (version 2019) is used for the finalised design drawing and stress simulation. The prototype is fabricated and tested through several experiments for usability validation which included tests on sound intensity level, cutting ability, polishing performance and battery power durability. Using Minitab 19, the data for the sound intensity and cutting ability experiments are analysed with two-sample t-tests. The data for the polishing performance and battery power durability experiments are analysed through observations, mean comparisons, and manual calculations. Significant differences are found to exist between the tested and control parameters in the context of each experiment, with the outcomes supporting the usability and performance of the present study’s multifunctional lawnmower. This study showed that the prototype has the potential to solve not only some of the problems in conventional lawnmowers but also a few limitations in existing robotic lawnmowers. The outcome of this study intends to benefit society by advancing innovation in lawn maintenance and improving quality of life.

Publisher

MDPI AG

Subject

General Engineering

Reference33 articles.

1. Literature Review of Grass Cutter Machine;Khodke;Int. J. Emerg. Technol. Eng. Res.,2018

2. Calculating Mowing Times and Productivity. Encore Power Equipmenthttp://www.encoreequipment.com/wordpress/wp-content/uploads/2012/06/Mowing-Times-and-Productivity.pdf

3. Vibration and Voice Caused by Lawn Maintenance Machines in Association with Risk to Health;Tint;Agron. Res. Biosyst. Eng.,2012

4. Noise exposure: Explanation of OSHA and NIOSH safe exposure limits and the importance of noise dosimetry;Niquette;Can. Hear. Rep.,2012

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3