The Expected Impact of Marine Energy Farms Operating in Island Environments with Mild Wave Energy Resources—A Case Study in the Mediterranean Sea

Author:

Rusu LilianaORCID,Onea FlorinORCID,Rusu EugenORCID

Abstract

A particularity of island areas is that they are subjected to strong sea state conditions that can have a severe impact on the beach stability, while on the other hand, they rely mainly on diesel combustion for electricity production which in the long run is not a sustainable solution. The aim of this work is to tackle these two issues, by assessing the impact of a hybrid marine energy farm that may operate near the north-western part of Giglio Island in the Mediterranean Sea. As a first step, the most relevant environmental conditions (wind and waves) over a 27-year time interval (January 1992–December 2018) were identified considering data coming from both ERA5 and the European Space Agency Climate Change Initiative for Sea State. An overview of the electricity production was made by considering some offshore wind turbines, the results showing that even during the summertime when there is a peak demand (but low wind resources), the demand can be fully covered by five wind turbines defined each by a rated power of 6 MW. The main objective of this work is to assess the coastal impact induced by a marine energy farm, and for this reason, various layouts obtained by varying the number of lines (one or two) and the distance between the devices were proposed. The modelling system considered has been already calibrated in the target area for this type of study while the selected device is defined by a relatively low absorption property. The dynamics of various wave parameters has been analysed, including significant wave height, but also parameters related to the breaking mechanics, and longshore currents. It was noticed that although the target area is naturally protected by the dominant waves that are coming from the south-western sector, it is possible to occur extreme waves coming from the north-west during the wintertime that can be efficiently attenuated by the presence of the marine energy farm.

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3