A Decentralized Blockchain-Based Energy Market for Citizen Energy Communities

Author:

Mousavi Peyman1ORCID,Ghazizadeh Mohammad Sadegh1ORCID,Vahidinasab Vahid2ORCID

Affiliation:

1. Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 19839-69411, Iran

2. Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK

Abstract

Despite the fact that power grids have been planned and utilized using centralized networks for many years, there are now significant changes occurring as a result of the growing number of distributed energy resources, the development of energy storage systems and devices, and the increased use of electric vehicles. In light of this development, it is pertinent to ask what an efficient approach would be to the operation and management of future distribution grids consisting of millions of distributed and even mobile energy elements. Parallel to this evolution in power grids, there has been rapid growth in decentralized management technology due to the development of relevant technologies such as blockchain networks. Blockchain is an advanced technology that enables us to answer the question raised above. This paper introduces a decentralized blockchain network based on the Hyperledger Fabric framework. The proposed framework enables the formation of local energy markets of future citizen energy communities (CECs) through peer-to-peer transactions. In addition, it is designed to ensure adequate load supply and observe the network’s constraints while running an optimal operation point by consensus among all of the players in a CEC. An open-source tool in Python is used to verify the performance of the proposed framework and compare the results. Through its distributed and layered management structure, the proposed blockchain-based framework proves its superior flexibility and proper functioning. Moreover, the results show that the proposed model increases system performance, reduces costs, and reaches an operating point based on consensus among the microgrid elements.

Publisher

MDPI AG

Subject

General Engineering

Reference38 articles.

1. (2023, June 22). Energy Communities. Available online: Energy.ec.europa.eu/topics/markets-and-consumers/energy-communities.

2. Attaran, M., and Gunasekaran, A. (2019). Applications of Blockchain Technology in Business: Challenges and Opportunities, Springer.

3. Capuano, L. (2018). International Energy Outlook 2018 (IEO2018).

4. TrafficChain: A Blockchain-Based Secure and Privacy-Preserving Traffic Map;Wang;IEEE Access,2020

5. Software defined machine-to-machine communication for smart energy management;Zhou;IEEE Commun. Mag.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3