An Approach for Using a Tensor-Based Method for Mobility-User Pattern Determining

Author:

Ashaev Ivan P.1ORCID,Safiullin Ildar A.1ORCID,Gaysin Artur K.1ORCID,Nadeev Adel F.1ORCID,Korobkov Alexey A.1ORCID

Affiliation:

1. Radioelectronics and Telecommunication Systems Department, Kazan National Research Technical University Named after A.N. Tupolev-KAI, K. Marx Str. 10, 420111 Kazan, Russia

Abstract

Modern mobile networks exhibit a complex heterogeneous structure. To enhance the Quality of Service (QoS) in these networks, intelligent control mechanisms should be implemented. These functions are based on the processing of large amounts of data and feature extraction. One such feature is information about user mobility. However, directly determining user mobility remains challenging. To address this issue, this study proposes an approach based on multi-linear data processing. The user mobility is proposed to determine, using the multi-linear data, about the changing of the Signal-to-Interference-plus-Noise-Ratio (SINR). SINR varies individually for each user over time, relative to the network’s base stations. It is natural to represent these data as a tensor. A tensor-based preprocessing step employing Canonical Polyadic Decomposition (CPD) is proposed to extract user mobility information and reduce the data volume. In the next step, using the DBSCAN algorithm, users are clustered according to their mobility patterns. Subsequently, users are clustered based on their mobility patterns using the DBSCAN algorithm. The proposed approach is evaluated utilizing data from Network Simulator 3 (NS-3), which simulates a portion of the mobile network. The results of processing these data using the proposed method demonstrate superior performance in determining user mobility.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3