Technological Solutions in the Field of Production and Use of Hydrogen Fuel to Increase the Thermal Efficiency of Steam Turbine TPPs

Author:

Komarov Ivan,Rogalev Nikolay,Rogalev Andrey,Kindra Vladimir,Lisin Evgeny,Osipov Sergey

Abstract

The paper discusses technological solutions in the field of production and use of hydrogen fuel, the combustion of which, in a steam-oxygen environment, can significantly increase the initial parameters of the steam turbine cycle and, thus, increase the thermal efficiency of traditional steam turbine thermal power plants. A study of technologies for the industrial production of hydrogen has been carried out. An analysis of the technical and economic features of hydrogen production technologies for use in the electric power industry showed that the most promising method is electrolysis, which makes it possible to obtain inexpensive hydrogen during hours of low demand for electricity or cogeneration of heat and electricity when electricity is a by-product. It is shown that in order to increase the power and efficiency of steam turbine TPPs, it is important to use external steam superheating from an external source of thermal energy, thus providing intermediate overheating of the working fluid by connecting an additional cycle with a higher equivalent initial temperature to the main steam turbine cycle. We have established that if we use hydrogen as a thermal energy source, the absolute efficiency of the steam turbine cycle can be increased up to 54%, taking into account the regenerative heating of feed water. In this case, at an overheating temperature equal to tnn = 760 °C, the absolute efficiency of the cycle is virtually equal to that of a CCGT unit operating at the initial gas temperature t0 = 1350 °C. At the same time, while maintaining the boiler performance, the rated capacity of the steam turbine power unit is increased by 12%. In addition, the study pays attention to the problem of increasing the power consumption of TPPs for the auxiliaries, as required to compress hydrogen and oxygen up to a pressure higher than that in the steam pipeline where the combustion chamber is installed. Our calculations have allowed us to conclude that, for the case of installing the combustion chamber in live steam, the share of additional power spent for auxiliaries should be 7%, whereas the main share of power is consumed for compressing hydrogen—94%. Despite the identified shortcomings, an economic analysis of the process of hydrogen production at TPP by electrolysis and its further use for intermediate overheating in steam turbines in order to increase their efficiency showed the effectiveness of this solution.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Engineering

Reference50 articles.

1. Russia and Countries of the World 2020;Russian Federal State Statistics Service

2. Global Energy Statistical Yearbook 2021 https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html

3. World Energy Outlook 2020 https://www.iea.org/reports/world-energy-outlook-2020

4. Energy Strategy of Russia until 2035;Ministry of Energy of Russia

5. Energy Strategy of the Russian Federation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3