Recent Developments in 3D Printing of Rare-Earth-Free Permanent Magnets

Author:

Sirisathitkul Chitnarong,Sirisathitkul YaowaratORCID

Abstract

This article reviews the advances in additive manufacturing of magnetic ceramics and alloys without rare-earth elements. Near-net-shaped permanent magnets with varying shapes and dimensions overcome traditional limitations of the cast, sintered, and bonded magnets. The published articles are categorized based on material types and 3D printing techniques. Selective laser melting and electron beam melting were predominantly used to produce alnico magnets. In addition to the electron beam melting, manganese aluminium-based alloys were successfully printed by fuse filament fabrication. By incorporating magnetic powders in polymers and then printing via extrusion, the fuse filament fabrication was also used to produce strontium ferrite magnets. Moreover, hard ferrites were printed by stereolithography and extrusion free-forming, without drawing composites into filaments. Magnetic properties in some cases are comparable to those of conventional magnets with the same compositions. Currently, available software packages can simulate magnetic fields for designing magnets and optimize the integration in electrical machines. These developments open up opportunities for next-generation permanent magnet applications.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3