Applications of Vegetative Indices from Remote Sensing to Agriculture: Past and Future

Author:

Hatfield Jerry L.ORCID,Prueger John H.ORCID,Sauer Thomas J.,Dold Christian,O’Brien PeterORCID,Wacha Ken

Abstract

Remote sensing offers the capability of observing an object without being in contact with the object. Throughout the recent history of agriculture, researchers have observed that different wavelengths of light are reflected differently by plant leaves or canopies and that these differences could be used to determine plant biophysical characteristics, e.g., leaf chlorophyll, plant biomass, leaf area, phenological development, type of plant, photosynthetic activity, or amount of ground cover. These reflectance differences could also extend to the soil to determine topsoil properties. The objective of this review is to evaluate how past research can prepare us to utilize remote sensing more effectively in future applications. To estimate plant characteristics, combinations of wavebands may be placed into a vegetative index (VI), i.e., combinations of wavebands related to a specific biophysical characteristic. These VIs can express differences in plant response to their soil, meteorological, or management environment and could then be used to determine how the crop could be managed to enhance its productivity. In the past decade, there has been an expanded use of machine learning to determine how remote sensing can be used more effectively in decision-making. The application of artificial intelligence into the dynamics of agriculture will provide new opportunities for how we can utilize the information we have available more effectively. This can lead to linkages with robotic systems capable of being directed to specific areas of a field, an orchard, a pasture, or a vineyard to correct a problem. Our challenge will be to develop and evaluate these relationships so they will provide a benefit to our food security and environmental quality.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3