Validation of a Simplified Numerical Model for Predicting Solid–Liquid Phase Change with Natural Convection in Ansys CFX

Author:

Rosa Nuno1ORCID,Soares Nelson1ORCID,Costa José1ORCID,Lopes António Gameiro1ORCID

Affiliation:

1. ADAI, Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal

Abstract

This paper presents a numerical model for simulating melting and solidification driven by natural convection, and validates it against a previous experiment. The experiment involved filling a rectangular aluminum enclosure with RT28HC Phase Change Material (PCM) to 95% of its capacity. To investigate the thermal behavior of the PCM during phase change, the enclosure underwent independent heating and cooling procedures. The simulation was conducted using ANSYS CFX®, and the additional heat source (AHS) method was implemented in conjunction with the Boussinesq approximation to account for the latent heat during melting and solidification driven by natural convection. This allowed the calculation of temperature fields, the melted fraction, and fluid dynamics during phase change. The momentum equations were modified to include a source term that accounted for a gradual decrease in fluid velocity as the PCM transitions from solid to liquid. To account for density variation, an artificial specific heat curve was implemented based on the assumption that the product of density and specific heat remains constant during phase change. The proposed numerical model achieved good agreement with the experimental data, with an average root mean square error of 2.6% and 3.7% for temperature profiles during charging and discharging simulations, respectively. This model can be easily implemented in ANSYS CFX® and accurately predicts charging and discharging kinetics, as well as stored/released energy, without any numerical convergence issues.

Publisher

MDPI AG

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolution mechanism of freezing in porous media at the pore scale: Numerical and experimental study;International Communications in Heat and Mass Transfer;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3