Thermodynamic Analysis of the Low-Grade Heat Sources for the Improvement in Efficiency of Oxy–Fuel Combustion Power Cycles

Author:

Komarov Ivan,Kindra VladimirORCID,Pisarev Dmitry,Kovalev Dmitriy,Lvov Dmitriy

Abstract

Today, most of the electrical energy in the world is generated by fossil fuel incineration. This causes significant emissions of harmful substances into the atmosphere. The noted problem can be solved by switching to power plants with zero emissions, operating in semi-closed cycles, and producing electricity through oxygen combustion of fuel. A significant drawback of most of the known oxygen–fuel cycles is the lack of useful utilization of various sources of low-grade heat, which is especially typical for power plants operating on gasified coal fuel; as a result of the gasification process, a significant amount of excess heat is released into the atmosphere. This paper presents the results of the development and study of oxygen–fuel cycle thermal schemes of increased efficiency with coal gasification. It was determined that the modernization of the scheme using the carbon dioxide Rankine cycle for the utilization of low-grade heat makes it possible to achieve an increase in the net electrical efficiency equal to 1.2%.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3