Organization of Control of the Generalized Power Quality Parameter Using Wald’s Sequential Analysis Procedure

Author:

Kulikov Aleksandr1,Ilyushin Pavel23ORCID,Suslov Konstantin34ORCID,Filippov Sergey2

Affiliation:

1. Department of Electroenergetics, Power Supply and Power Electronics, Nizhny Novgorod State Technical University R.E. Alekseev, 603950 Nizhny Novgorod, Russia

2. Department of Research on the Relationship between Energy and the Economy, Energy Research Institute of the Russian Academy of Sciences, 117186 Moscow, Russia

3. Department of Hydropower and Renewable Energy, National Research University “Moscow Power Engineering Institute”, 111250 Moscow, Russia

4. Department of Power Supply and Electrical Engineering, Irkutsk National Research Technical University, 664074 Irkutsk, Russia

Abstract

This paper analyzes the key defining features of modern electric power distribution networks of industrial enterprises. It is shown that the requirements set by industrial enterprises with respect to power quality parameters (PQPs) at the points of their connection to external distribution networks of utilities have been becoming increasingly strict in recent years. This is justified by the high sensitivity of critical electrical loads and distributed generation facilities to distortions of currents and voltages from a pure sine wave. Significant deviations of PQPs lead to significant damage at the consumer end due to the shutdown of electrical equipment by electrical and process protections as a result of overheating and increased wear and tear of individual elements of process lines. This necessitates the implementation of continuous monitoring systems at industrial enterprises, or sampling-based monitoring of PQPs at the boundary bus with an external distribution network. When arranging sampling-based monitoring of PQPs at certain time intervals, only those parameters that are critical for specific electrical loads should be calculated. We provide a rationale for the transition from the monitoring of a set of individual PQPs to a generalized PQP with the arrangement of simultaneous monitoring of several parameters. The joint use of the results of simulation and data from PQP monitoring systems for PQP analysis using the sampling-based procedure produces the desired effect. We present an example of a sequential decision-making process in the analysis of a generalized PQP based on Wald’s sequential analysis procedure. This technique makes it possible to adapt the PQP monitoring procedure to the features of a specific power distribution network of an industrial enterprise. We present the structural diagram of the device developed by the authors, which implements the sampling-based monitoring procedure of the generalized PQP. We put forward an approach for determining the average number of sampling data points required to make a decision about the power quality in the implementation of the sequential analysis procedure.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3