Abstract
Scientists and researchers are exploring different methods of generating and delivering electrical energy in an economical and reliable way, enabling them to generate electricity focusing on renewable energy resources. All of these possess the natural property of self-changing behavior, so the connection of these separate independent controllable units to the grid leads to uncertainties. This creates an imbalance in active power and reactive power. In order to control the active and reactive power in wind turbine generators with adjustable speed, various control strategies are used to allay voltage and current variations. This research work is focused on the design and implementation of effective control strategies for doubly fed induction generator (DFIG) to control its active and reactive power. A DFIG system with its control strategies is simulated on MATLAB software. To augment the transient stability of DFIG, the simulation results for the active and reactive power of conventional controllers are compared with three types of feed forward neural network controllers, i.e., probabilistic feedforward neural network (PFFNN), multi-layer perceptron feedforward neural network (MLPFFN) and radial basic function feedforward neural network (RBFFN) for optimum performance. Conclusive outcomes clearly manifest the superior robustness of the RBFNN controller over other controllers in terms of rise time, settling time and overshoot value.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献