A Surface-Enhanced Raman Spectroscopic Sensor Pen

Author:

Song Zejiang1,Li Zhijie2,Zhan Weishen2,Zhao Wanli3,Chui Hsiang-Chen1ORCID,Li Rui2

Affiliation:

1. School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China

2. School of Physics, Dalian University of Technology, Dalian 116000, China

3. Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China

Abstract

Surface-enhanced Raman spectroscopy (SERS) is widely used as a detection method in scientific research fields. However, the method for creating SERS substrates often requires expensive equipment and involves a complex process. Additionally, preserving and effectively utilizing SERS substrates in the long term poses a challenging problem. In order to address these issues, we propose a new method for creating SERS substrates on various types of paper using a combination of a ballpoint pen and 3D printing. This method ensures a high enhancement factor and maximizes the utilization of the substrate. We achieved an enhancement factor of up to 8.2 × 108 for detecting R6G molecules, with a relative standard deviation of 11.13% for the Raman peak at 612 cm−1 of R6G, demonstrating excellent SERS sensitivity and spectral reproducibility. Furthermore, we successfully detected thiram at a concentration as low as 10−8, which is lower than both the Chinese national standard and European standard.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3