Optimization Study of CO2 Gas Absorption with NaOH Absorbent Continuous System in Raschig Ring Packing Column Using Box–Behnken Design

Author:

Jakfar 1ORCID,Husin Husni12ORCID,Zaki Muhammad1,Mairiza Lia12,Zulrika Mirna1ORCID,Nasution Fahrizal12,Ahmadi 1ORCID

Affiliation:

1. Chemical Engineering Department, Engineering Faculty, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia

2. Doctoral Program, School of Engineering, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia

Abstract

Increasing CO2 gas emissions results in climate change by increasing air temperature and worsening environmental problems. It is necessary to control CO2 gas in the air to overcome this. This research aims to optimize the absorption of CO2 gas in the air with 0.1 M NaOH absorbent in the column of the Raschig ring stuffing material using the response surface methodology (RSM). This research was conducted using a continuous system of three independent variables by varying the contact time (10–80 min), the flow rate of NaOH absorbent (2–5 L/min), and the flow rate of CO2 gas (1–5 L/min). The response variables in this study were the absorption rate (L/min) and mass transfer coefficient, while the air flow rate was constant at 20 L/min. Air and CO2 gas mix before absorption occurs and flow into the Raschig ring packing column so that contact occurs with the NaOH absorbent. Mass transfer of CO2 gas occurs into the NaOH absorbent, resulting in absorption. The results showed that the effect of contact time (min), the flow rate of NaOH absorbent (L/min), and CO2 gas flow rate individually and the interaction on CO2 absorption rate and mass transfer coefficient were very significant at a p-value of 0.05. Chemical absorption of CO2 also occurred due to the reaction between CO2 and OH- to form CO32− and HCO3−, so the pH decreased, and the reaction was a function of pH. Optimization using Design Expert 13 RSM Box–Behnken Design (BBD) yielded optimal conditions at an absorption time of 80 min, NaOH absorbent flow rate of 5 L/min, CO2 gas flow rate of 5 L/min, absorption rate of CO2 gas of 3.97 L/min, and CO2 gas mass transfer coefficient of 1.443 mol/min m2 atm, with the desirability of 0.999 (≈100%).

Publisher

MDPI AG

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3