A 2-DoF Kinematic Chain Analysis of a Magnetic Spring Excited by Vibration Generator Based on a Neural Network Design for Energy Harvesting Applications

Author:

Bijak Joanna1ORCID,Lo Sciuto Grazia1,Kowalik Zygmunt1ORCID,Trawiński Tomasz1ORCID,Szczygieł Marcin1ORCID

Affiliation:

1. Department of Mechatronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

In this paper, an original mathematical model and experimental results for the vibration generator and the magnetic spring prototype that converts mechanical energy to electrical energy are proposed. The magnetic spring model is developed by a robotic approach based on Denavit–Hartenberg’s notation and designed by the 2-degrees of freedom kinematic chain for determination of its motion and estimation of several resonance frequencies useful in many energy harvesting applications. The vibration generator that moves the magnetic spring is modeled by neural networks and the magnetic spring potential energy is calculated by the finite elements method (FEM). Furthermore, the magnetic spring and the vibration generator are designed by the Simulink block diagram. Testing results of the magnetic spring and vibration generator displacement conducted in laboratory have shown good agreement with simulation results.

Publisher

MDPI AG

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3