Development and Analysis of Solutions to Improve the Efficiency of Volute Inlet Pipes in Radial Turboexpanders

Author:

Osipov Sergey,Rogalev Nikolay,Rogalev Andrey,Komarov Ivan,Lvov Dmitriy

Abstract

The annual increase in demand for electrical power is accompanied by a significant combustion of hydrocarbon fuels and, accordingly, significant CO2 emissions into the atmosphere, which, in turn, result in increasing the surface temperature of our planet. In addition, hydrocarbon fuel reserves are also depleted every year, which raises the question of the efficient use of fossil fuels. One of the promising solutions to this problem is introducing a technology that allows using the excess gas pressure at gas distribution points in order to generate additional electrical energy. As a rule, a radial turboexpander is used to convert the kinetic energy of natural gas at low power. In this paper, we study a method to reduce losses in a volute inlet of a radial expander. Based on our research, we could find that the use of two symmetrical fins in the volute inlet pipe makes it possible to decrease the turbulent kinetic energy by 1.29% and to reduce the energy losses in the inlet pipe by 2.18%.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3