Investigation and Numerical Simulation of the Acoustic Target Strength of the Underwater Submarine Vehicle

Author:

Sathish Kaveripakam,Anbazhagan Rajesh,Venkata Ravikumar Chinthaginjala,Arena FabioORCID,Pau GiovanniORCID

Abstract

Modern weapon systems’ survival hinges on their detection capabilities more than anything else. In the active sonar equation, the acoustic target strength is crucial. Under the assumption of plane wave propagation, the standard target strength equation is used to forecast the reradiated intensity for the far field. The ability of a submarine to remain unnoticed while on patrol or accomplishing a mission is its primary defense. Sonar, sometimes known as sound navigation ranging, is a popular method for locating submarines. This is because saltwater effectively absorbs radio frequencies. Sonar technology is used in more than just the commercial fishing business; it is also used in undersea research. The submarine’s designers consider the reflection of acoustic waves to minimize the amount of space required for such reflections. The Target Strength (TS) metric is used to assess the sonar objects’ size. This manuscript explains and demystifies the Benchmark Target Echo Strength Simulation (BeTTSi) benchmark submarine’s TS analysis. This model’s Pressure Acoustic-Boundary Element Model (PA-BEM) interface has been stabilized, and the model itself is pretty huge acoustically.

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3