Asymmetric Information in Military Microgrid Confrontations—Evaluation Metric and Influence Analysis

Author:

Jiang Peng,Huang ShengjunORCID,Zhang Tao

Abstract

Due to the wide integration of information technology in equipment and weapons, a stable and reliable power supply has become one of the pivotal factors in modern warfare to achieve victory. As a critical infrastructure to provide continuous energy supply during long-duration electrical outage, military microgrid always suffers fierce attacks from the enemy. In order to improve the defense effect, a lot of investigation has been made into resource allocation, Distributed Generator (DG) distribution, network reconfiguration, and so forth. Nevertheless, the information gap between defender and attacker has not been considered in the literature. Therefore, this paper is intended to highlight this information mismatch to appeal for community attention and evaluate its capability to improve defensive performance. Firstly, a novel assessment metric is proposed to identify the level of asymmetric information. Then, an Attacker-Defender (AD) model is developed to describe the zero-sum game between two opposite agents, which is subsequently tackled with dual theory and big-M method. Finally, three cases ranging from 6-bus to 57-bus are utilized for numerical experiments to analyze the influence of asymmetric information on military microgrid confrontation. Results on various levels of attack strength validated the effectiveness and significance of asymmetric information in eliminating the attack damage and improving the defensive performance.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3