Numerical Study of Heat Transfer in Gravity-Driven Particle Flow around Tubes with Different Shapes

Author:

Tian Xing,Yang JianORCID,Guo Zhigang,Wang QiuwangORCID,Sunden BengtORCID

Abstract

In the present paper, the heat transfer of gravity-driven dense particle flow around five different shapes of tubes is numerically studied using discrete element method (DEM). The velocity vector, particle contact number, particle contact time and heat transfer coefficient of particle flow at different particle zones around the tube are carefully analyzed. The results show that the effect of tube shape on the particle flow at both upstream and downstream regions of different tubes are remarkable. A particle stagnation zone and particle cavity zone are formed at the upstream and downstream regions of all the tubes. Both the stagnation and cavity zones for the circular tube are the largest, and they are the smallest for the elliptical tube. As the particle outlet velocity (vout) changes from 0.5 mm/s to 8 mm/s at dp = 1.72 mm/s, when compared with the circular tube, the heat transfer coefficient of particle flow for the elliptical tube and flat elliptical tube can increase by 20.3% and 15.0% on average, respectively. The proper design of the downstream shape of the tube can improve the overall heat transfer performance more efficiently. The heat transfer coefficient will increase as particle diameter decreases.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3