A Novel Strategy for Sensorless Control of IPMSM with Error Compensation Based on Rotating High Frequency Carrier Signal Injection

Author:

Guo LeiORCID,Yang Zhongping,Lin Fei

Abstract

In the applications of rail transit and electric vehicles, sensorless control of interior permanent magnet synchronous motor (IPMSM) usually uses high frequency (HF) signal injection in low speed or zero speed. Rotating HF signal injection based on the stationary reference frame can identify the rotor position, but its accuracy is easily affected by various nonlinearities of the control system and stator resistance. In this paper, the causes of rotor position estimation deviation are analyzed and deduced in detail. It is proposed that the rotor position estimation deviation can be divided into high frequency phase deviation (HFPD) and stator resistance phase deviation. On the basis of these analyses, a novel sensorless rotor position estimation strategy for IPMSM is proposed. This strategy can theoretically eliminate the HF phase deviation caused by the nonlinearity of the control system and reduce the phase deviation caused by the stator resistance. Although the factors that cause the estimation deviation of rotor position may change with the time and the operation status of the motor, the proposed strategy has the characteristics of online calculation and real-time compensation, which can improve the accuracy of the estimated rotor position. In addition, this paper provides a detailed theoretical derivation of resolving rotor position considering stator resistance and HF phase deviation. Finally, the result analysis on an IPMSM demonstrate the correctness of the theoretical analysis and the effectiveness of the strategy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3