Cutting Niches in Rock Salt by Means of a High-Pressure Water Jet in Order to Accelerate the Leaching of Storage Caverns for Hydrogen or Hydrocarbons

Author:

Korzeniowski WaldemarORCID,Poborska-Młynarska Katarzyna,Skrzypkowski KrzysztofORCID,Zagórski Krzysztof,Chromik Mariusz

Abstract

The article explores the potential for modification of the well-known salt cavern leaching process for brine production or/and hydrocarbon or hydrogen storage facilities, enabling the acceleration of the pace of acquiring new storage capacities with their increased geomechanical stability. The innovative technology is based on the use of high-pressure water jet technique for disc niche cutting in salt rock. The effect of such operations is a significant increase in the contact area of the water with the rock during cavern leaching and faster concentrated brine recovery already in the first leaching phase. This aspect was tested in 67 tests performed for three different types of rock salt: green, pink, and Spiza salt. Laboratory tests of the successive cutting of niches with a stream of water at 500 bar were carried out. The effectiveness of water jet was demonstrated and the possibilities of effective cutting of niches. Significant relationships were found between the obtained depth of niches at a given stream pressure and the duration of individual operations. Depending on the type of salt, the rate of increase in their depth was determined. The presented test results precede the much larger upscaling project, currently at the preparatory stage.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

1. Some aspects of underground hydrogen storage;Tarkowski;Geol. Rev.,2017

2. Supporting method for salt caverns leaching—Initial computer simulations;Chromik,2019

3. Solution Mining in Salt Deposits. Outline of Recent Development Trends;Kunstman,2007

4. Sources of our knowledge about leaching process (Salt cavern leaching process p. I);Urbańczyk;Salt Rev.,2015

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3