Assessment of Thermal Comfort in the Intelligent Buildings in View of Providing High Quality Indoor Environment

Author:

Majewski GrzegorzORCID,Orman Łukasz J.,Telejko Marek,Radek Norbert,Pietraszek Jacek,Dudek AgataORCID

Abstract

The paper analyses the indoor environment in two modern intelligent buildings located in Poland. Measurements of air and globe temperatures, relative humidity and carbon dioxide concentration in 117 rooms carried out in the space of 1.5 years were presented. Thermal comfort of the occupants has been investigated using a questionnaire survey. Based on 1369 questionnaires, thermal sensation, acceptability and preference votes were analysed in view of their interdependency as well as their dependency on operative temperature, which proved to be very strong. It has been found that the respondents did not completely rate thermal comfort and indoor environment quality as very high, although the overwhelming sensations were positive. Apart from the operation of heating, ventilation and air conditioning (HVAC) systems, this might have also been the cause of individual human factors, such as body mass index, as tested in the study, or the finding that people were generally in favour of a warmer environment. Moreover, thermal environment proved to be the most important element for ensuring the well-being of the occupants.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. Demand response and smart grids—A survey

2. Comparison of thermal comfort algorithms in naturally ventilated office buildings

3. Building energy audit, thermal comfort, and IAQ assessment of a school building: A case study

4. Directive (EU) 2018/844 of the European Parliament and of The Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and DIRECTIVE 2012/27/EU on Energy Efficiency;OJ,2018

5. Calculation of thermal comfort: Introduction of a basic comfort equation;Fanger;ASHRAE Trans.,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3