On-Site Identification of the Material Composition of PV Modules with Mobile Spectroscopic Devices

Author:

Eder Gabriele C.ORCID,Lin Yiji,Voronko Yuliya,Spoljaric-Lukacic Lidija

Abstract

With the increased development of portable and handheld molecular spectrometers within recent years, new fields of applications have opened up, such as their use (i) for material identification of samples contained in large and non-portable components and (ii) the detection of material degradation effects and failures directly in the plant. The usability and transferability of well-established analytical characterization techniques, such as attenuated total reflection (ATR) Infrared (IR)-, Raman, and Near-Infrared (NIR)-spectroscopy as mobile devices for the in-field characterization of Photovoltaic (PV) modules, are described and discussed. Material identification of the polymeric compounds incorporated in the PV modules (encapsulants, backsheets) is often an important task, especially when degradation and failures occur. Whereas the knowledge of the bill of materials is one challenge, the detection of material degradation effects is another important issue. Both tasks can be solved nondestructively by the application of mobile spectrometers. Raman spectroscopy is the best-suited method for the identification of the encapsulant within the module (measurement through 3-mm glass), while NIR measurements allowed for the nondestructive determination of the composition of the multilayer backsheet. Surface degradation effects (e.g., oxidation, hydrolysis) are best detectable with IR-spectroscopy. The application of mobile devices allows for direct material analysis in the field without dismantling PV modules, transporting them to the lab, cutting them in smaller pieces, and analyzing them in conventional bench-top spectrometers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference33 articles.

1. Interdependency of mechanical failure rate of encapsulated solar cells and module design parameters

2. Failure Modes Evaluation of PV Module via Materials Degradation Approach

3. Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review

4. Review of Failures Photovoltaic Modules. IEA PVPS Task 13—International Energy Agency—Photovoltaic Power Systems Programme (www.iea-pvps.org). Performance and Reliability of Photovoltaic Systems;Köntges,2014

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3