Analysis of Energy Consumption of the Reduction of Fe2O3 by Hydrogen and Carbon Monoxide Mixtures

Author:

Sun GuanyongORCID,Li Bin,Yang Wensheng,Guo Jing,Guo Hanjie

Abstract

Energy consumption is directly related to the energy supply and production costs of gas-based direct reduction ironmaking, which is an effective choice to reduce the energy consumption of iron making. In this paper, the minimum Gibbs free energy principle was used to calculate the equilibrium composition under the conditions of reduction gas consisting of hydrogen and carbon monoxide (hydrogen concentration of 0–100%, reduction gas amount of 0–6.0 mol, reduction temperature of 790–1100 °C, and 0.5 mol Fe2O3). According to the enthalpy change, a simplified energy consumption model of a gas-based direct reduction ironmaking process was established, and the energy consumption per mole of metallic iron produced was calculated in detail. The following conclusions were drawn: at the stage when the reduction reaction occurred, the utilization rate of hydrogen or carbon monoxide remained unchanged with the increase in the amount of reduction gas or the increase in the hydrogen concentration of initial gas. The direct energy consumption increased with the increase in the hydrogen concentration at 790–980 °C and the opposite was true at 980–1100 °C. At 790–980 °C, the total energy consumption per ton of iron was greater than 0 and increased with the increase in initial hydrogen concentration from 40% to 100%, and it was less than 0 and increased with the increase in initial hydrogen concentration from 0% to 30%. It was possible to achieve zero total energy consumption with a hydrogen concentration of 30% and a 973 °C reduction.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3