Investigating Seawater Intrusion in Republic of South Africa’s Heuningnes, Cape Agulhas Using Hydrogeochemistry and Seawater Fraction Techniques

Author:

Xaza Abongile1ORCID,Mapoma Harold Wilson Tumwitike2ORCID,Abiye Tamiru A.3ORCID,Clarke Sumaya1,Kanyerere Thokozani1ORCID

Affiliation:

1. Department of Earth Sciences, University of the Western Cape, Bellville 7535, South Africa

2. Department of Physics and Biochemical Sciences, Malawi University of Business and Applied Sciences, Private Bag 303, Blantyre 312225, Malawi

3. School of Geosciences, University of the Witwatersrand, Johannesburg 2050, South Africa

Abstract

The Heuningnes Catchment in the Republic of South Africa was used as a case study in this research to describe the application of saltwater fraction/quantification and hydrogeochemistry methods to evaluate the extent of saline intrusion in the coastal aquifers. The argument of the research is that the presence of seawater incursion may be conclusively determined by combining the examination of the major ions, seawater fraction, stable isotopes of water, bromide, and geochemical modeling. Using stable isotopes of oxygen (18O) and deuterium (2H), major ions chemistry, seawater composition, and geochemical modeling, the genesis of salinity and mixing of different water masses were examined. Twenty-nine (29) samples of groundwater were examined. All samples showed water facies of the Na-Cl type, indicating a seawater-related origin. The significance of mixing in coastal aquifers under natural conditions was shown by the hydrogeochemical characteristics of key ions derived from ionic ratios, which demonstrated substantial adherence to mixing lines among endmembers for freshwater as well as saltwater (seawater). The quantification of seawater contribution in groundwater percentages varied from 0.01 to 43%, with three samples having concentrations of seawater above 50%. It was clear from the hydrogeochemical analysis and determination of the proportion of saltwater that the seawater intrusion impacted the coastal fresh groundwater. In addition, the chloride concentration in the groundwater ranged from 81.5 to 26,557.5 mg/L, with the corresponding δ18O values ranging from −5.5‰ to −0.9‰, which suggested that freshwater and saltwater were mixing. The Br−/Cl− ratios showed that evaporation had played a part in elevating groundwater salinity as well. Since saturation indices were below zero, the mineral dissolution could also contribute to the salinization of groundwater. Further proof of seawater incursion in the investigated catchment was supplied by geochemical modeling and bromide. Even though such tools were not verified in multiple coastal aquifers for widespread generalization, the study offered a scientifically significant understanding of the application of such tools on seawater intrusion in coastal aquifers and has useful recommendations for the aquifer setting of similar environments.

Funder

National Research Foundation

GRDM project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3