Multi-Criteria Feature Selection Based Intrusion Detection for Internet of Things Big Data

Author:

Wang Jie1,Xiong Xuanrui1,Chen Gaosheng1ORCID,Ouyang Ruiqi1,Gao Yunli2,Alfarraj Osama3ORCID

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. School of Software, Dalian University of Technology, Dalian 116024, China

3. Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia

Abstract

The rapid growth of the Internet of Things (IoT) and big data has raised security concerns. Protecting IoT big data from attacks is crucial. Detecting real-time network attacks efficiently is challenging, especially in the resource-limited IoT setting. To enhance IoT security, intrusion detection systems using traffic features have emerged. However, these face difficulties due to varied traffic feature formats, hindering fast and accurate detection model training. To tackle accuracy issues caused by irrelevant features, a new model, LVW-MECO (LVW enhanced with multiple evaluation criteria), is introduced. It uses the LVW (Las Vegas Wrapper) algorithm with multiple evaluation criteria to identify pertinent features from IoT network data, boosting intrusion detection precision. Experimental results confirm its efficacy in addressing IoT security problems. LVW-MECO enhances intrusion detection performance and safeguards IoT data integrity, promoting a more secure IoT environment.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3