Affiliation:
1. Engineering Research Center of Optical Instrument and System, Ministry of Education, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, 516 Jungong Rd., Shanghai 200093, China
Abstract
The rapid development of cloud computing and deep learning makes the intelligent modes of applications widespread in various fields. The identification of Raman spectra can be realized in the cloud, due to its powerful computing, abundant spectral databases and advanced algorithms. Thus, it can reduce the dependence on the performance of the terminal instruments. However, the complexity of the detection environment can cause great interferences, which might significantly decrease the identification accuracies of algorithms. In this paper, a deep learning algorithm based on the Dense network has been proposed to satisfy the realization of this vision. The proposed Dense convolutional neural network has a very deep structure of over 40 layers and plenty of parameters to adjust the weight of different wavebands. In the kernel Dense blocks part of the network, it has a feed-forward fashion of connection for each layer to every other layer. It can alleviate the gradient vanishing or explosion problems, strengthen feature propagations, encourage feature reuses and enhance training efficiency. The network’s special architecture mitigates noise interferences and ensures precise identification. The Dense network shows more accuracy and robustness compared to other CNN-based algorithms. We set up a database of 1600 Raman spectra consisting of 32 different types of liquid chemicals. They are detected using different postures as examples of interfered Raman spectra. In the 50 repeated training and testing sets, the Dense network can achieve a weighted accuracy of 99.99%. We have also tested the RRUFF database and the Dense network has a good performance. The proposed approach advances cloud-enabled Raman spectra identification, offering improved accuracy and adaptability for diverse identification tasks.
Funder
Science and Technology Commission of Shanghai Municipality
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry