Iterated Residual Graph Convolutional Neural Network for Personalized Three-Dimensional Reconstruction of Left Myocardium from Cardiac MR Images

Author:

Wang Xuchu1ORCID,Yuan Yue1,Liu Minghua1,Niu Yanmin2

Affiliation:

1. Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China

2. College of Computer and Information Science, Chongqing Normal University, Chongqing 400050, China

Abstract

Three-dimensional reconstruction of the left myocardium is of great significance for the diagnosis and treatment of cardiac diseases. This paper proposes a personalized 3D reconstruction algorithm for the left myocardium using cardiac MR images by incorporating a residual graph convolutional neural network. The accuracy of the mesh, reconstructed using the model-based algorithm, is largely affected by the similarity between the target object and the average model. The initial triangular mesh is obtained directly from the segmentation result of the left myocardium. The mesh is then deformed using an iterated residual graph convolutional neural network. A vertex feature learning module is also built to assist the mesh deformation by adopting an encoder–decoder neural network to represent the skeleton of the left myocardium at different receptive fields. In this way, the shape and local relationships of the left myocardium are used to guide the mesh deformation. Qualitative and quantitative comparative experiments were conducted on cardiac MR images, and the results verified the rationale and competitiveness of the proposed method compared to related state-of-the-art approaches.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3