Formation Mechanism of Trailing Oil in Product Oil Pipeline

Author:

Liu Enbin,Li Wensheng,Cai Hongjun,Peng Shanbi

Abstract

Trailing oil is the tail section of contamination in oil pipelines. It is generated in batch transportation, for which one fluid, such as diesel oil follows another fluid, such as gasoline, and it has an effect on the quality of oil. This paper describes our analysis of the formation mechanism of trailing oil in pipelines and our study of the influence of dead-legs on the formation of trailing oil. We found that the oil replacement rate in a dead-leg is exponentially related to the flow speed, and the length of the dead-leg is exponentially related to the replacement time of the oil. To reduce the amount of mixed oil, the main flow speed should be kept at about 1.6 m/s, and the length of the dead-leg should be less than five times the diameter of the main pipe. In our work, the Reynolds time-averaged method is used to simulate turbulence. To obtain contamination-related experimental data, computational fluid dynamics (CFD) software is used to simulate different flow rates and bypass lengths. MATLAB software was used to perform multi-nonlinear regression for the oil substitution time, the length of the bypass, and the flow speed. We determined an equation for calculating the length of the trailing oil contamination produced by the dead-leg. A modified equation for calculating the length of the contamination was obtained by combining the existing equation for calculating the length of the contamination with new factors based on our work. The amounts of contamination predicted by the new equation is closer to the actual contamination amounts than predicted values from other methods suggested by previous scholars.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference34 articles.

1. Contaminated products in batch transportation pipeline of finished products and their treatment;Liu;Pet. Geol. Eng.,2005

2. Efficient planning of crude oil supplies through long-distance pipelines

3. Gravity currents produced by lock exchange

4. Keystone XL Pipeline Project: Key Issues. Congressional Research Service;Parfomak,2011

5. How much mixing occurs between batches?;Levenspiel;Pipe Line Ind.,1958

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3