Enhancing Surface Topology of Udimet®720 Superalloy through Ultrasonic Vibration-Assisted Ball Burnishing

Author:

Jerez-Mesa RamónORCID,Plana-García VictoriaORCID,Llumà JordiORCID,Travieso-Rodriguez J. AntonioORCID

Abstract

This contribution reports the effects of an ultrasonic-vibration assisted ball burnishing process on the topological descriptors of nickel-based alloy Udimet®720. This material is of high interest for the transportation industry, and specifically for the aeronautical sector. Despite the acknowledged necessity to finish this material to achieve excelling mechanical performances of parts, surface integrity enhancement by means of plastic deformation through ball burnishing has seldom been explored in previous references so far. In this paper, different surface descriptors are used to report how the topology changes after ultrasonic-assisted ball burnishing, and how burnishing conditions influence that change. The burnishing preload and the number of passes are the only influential factors on surface change, whereas the feed velocity of the tool and the strategy reveal not to be relevant on the result. Additionally, the extent to which the process successfully modifies the objective surfaces is highly divergent depending on the original scale of the treated surface. The assistance of the process with vibrations also shows that the resulting topologies are characterized by a periodical pattern of repetitive peaks and valleys that are extended on the surface with a higher frequency in comparison to the non-assisted process, which could influence in the functional deployment of workpieces treated through it, and could deliver an advantage with regard to its non-assisted homologous process.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3