Bioleaching of Phosphate Minerals Using Aspergillus niger: Recovery of Copper and Rare Earth Elements

Author:

Castro LauraORCID,Blázquez Maria Luisa,González Felisa,Muñoz Jesús Angel

Abstract

Rare earth elements (REE) are essential in high-technology and environmental applications, where their importance and demand have grown enormously over the past decades. Many lanthanide and actinide minerals in nature are phosphates. Minerals like monazite occur in small concentrations in common rocks that resist weathering. Turquoise is a hydrous phosphate of copper and aluminum scarcely studied as copper ore. Phosphate-solubilizing microorganisms are able to transform insoluble phosphate into a more soluble form which directly and/or indirectly contributes to their metabolism. In this study, bioleaching of heavy metals from phosphate minerals by using the fungus Aspergillus niger was investigated. Bioleaching experiments were examined in batch cultures with different mineral phosphates: aluminum phosphate (commercial), turquoise, and monazite (natural minerals). The experiments were performed at 1% pulp density and the phosphorous leaching yield was aluminum phosphate > turquoise > monazite. Bioleaching experiments with turquoise showed that A. niger was able to reach 8.81 mg/l of copper in the aqueous phase. Furthermore, the fungus dissolved the aluminum cerium phosphate hydroxide in monazite, reaching up to 1.37 mg/L of REE when the fungus was grown with the mineral as the sole phosphorous source. Furthermore, A. niger is involved in the formation of secondary minerals, such as copper and REE oxalates.

Funder

Universidad Complutense de Madrid

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference40 articles.

1. The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations

2. Rare Earth Elements: Industrial Applications and Economic Dependency of Europe

3. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EUhttps://ec.europa.eu/transparency/regdoc/rep/1/2017/EN/COM-2017-490-F1-EN-MAIN-PART-1.PDF

4. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3