Percolation of Primary Crystals in Cell Walls of Aluminum Alloy Foam via Semi-Solid Route

Author:

Takamatsu SatomiORCID,Kuwahara Takashi,Kochi Ryunosuke,Suzuki Shinsuke

Abstract

Herein, a uniform aluminum alloy foam was fabricated by the addition of TiH2 as a blowing agent to Al-6.4 mass % Si in the semi-solid state and subsequent solidification. This was aimed at propounding the stabilization mechanism of the proposed foaming process. The microscopic images, which were the cross section on the center of the foam etched with Weck’s reagent, showed the primary crystals in the semi-solid state and solidifying segregation surrounding the crystals. Thus, it became evident that the area ratio of primary crystals in the semi-solid state approximately equals to the set solid fraction. According to the percolation theory for the cell wall model, the drainage in the cell walls with primary crystals above the percolation threshold was found to be inhibited. By considering that each cell wall is a flow path of the foam, the percentage of the cell walls with inhibited drainage to all the other cell walls was observed to exceed the percolation threshold of the lattice model (0.33) as per the percolation theory. Therefore, it can be concluded that the primary crystals inhibit drainage in some cell walls, ensuring that the stability of the foam is maintained.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3