Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass

Author:

Szala Mirosław,Łatka Leszek,Walczak Mariusz,Winnicki Marcin

Abstract

The paper investigates the cavitation erosion (CE) and sliding wear (SW) resistance of cold-sprayed Al/Al2O3 and Cu/Al2O3 composites and studies them in relation to a set of metallic materials such as aluminium alloy (AlCu4Mg1), pure copper (Cu110), brass (CuZn40Pb2) and stainless steel (AISI 304). The coatings were deposited on stainless steel by low-pressure cold spray (LPCS) using Al (40 wt.%) and Cu (50 wt.%) blended with Al2O3 (60 and 50 wt.%, respectively) feedstocks. CE resistance was estimated by the stationary sample method according to the ASTM G32 standard. The SW test was conducted using a ball-on-disc tester with compliance to the ASTM G99 standard. Results obtained for the LPCS coatings show that the Cu/Al2O3 coating exhibits a denser structure but lower adhesion and microhardness than Al/Al2O3. The Al/Al2O3 and Cu/Al2O3 resistance to cavitation is lower than for bulk alloys; however, composites present higher sliding wear resistance to that of AlCu4Mg1, CuZn40Pb2 and stainless steel. The CE wear mechanisms of LPCS composites start at the structural discontinuities and non-uniformities. The cavitation erosion degradation mechanism of Al/Al2O3 relies on chunk material detachment while that of Cu/Al2O3 initiates by alumina removal and continues as layer-like Cu-metallic material removal. CE damage of metal alloys relies on the fatigue-induced removal of deformed material. The SW mechanism of bulk alloys has a dominant adhesive mode. The addition of Al2O3 successfully reduces the material loss of LPCS composites but increases the friction coefficient. Coatings’ wear mechanism has an adhesive-abrasive mode. In both CE and SW environment, the behaviour of the cold-sprayed Cu/Al2O3 composite is much more promising than that of the Al/Al2O3.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3