Study of Micro Structural Material Changes after WEDM Based on TEM Lamella Analysis

Author:

Mouralova KaterinaORCID,Zahradnicek Radim,Benes Libor,Prokes Tomas,Hrdy Radim,Fries JiriORCID

Abstract

Wire electrical discharge machining is an unconventional machining technology that is crucial in many industries. The surface quality of the machined parts is carefully monitored, but the condition of the subsurface layer also plays a crucial role, especially in case of defects occurrence such as cracks or burnt cavities. The subsurface layer of individual materials is affected differently due to wire electrical discharge machining. For this reason, this study was carried out focusing on a detailed analysis of transmission electron microscope (TEM) lamella made of Ti-6Al-4V titanium alloy, AlZn6Mg2Cu aluminum alloy, pure molybdenum, Creusabro 4800 steel, and Hardox 400 steel. The attention was first of all paid to the concentration and distribution of individual elements in the recast layer and also in the base material, which was often affected by wire electrical discharge machining. Further, a diffraction analysis was performed for each TEM lamella in the adhesive area and in the base material area. In order to assess the macro-effects on the machined material, the topography analysis of the machined surfaces and the morphology analysis were performed using electron microscopy.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference23 articles.

1. Wire-EDM Process Parameters and Optimization;Vates,2018

2. Optimization of Wire Electrical Discharge Machining;Ranjan,2016

3. Advanced Methods of Machining;McGeough,1988

4. Review on Current Research Trends in Wire Electrical Discharge Machining (WEDM)

5. Wire electro discharge trueing and dressing of fine grinding wheels

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3