Microstructural Investigations of Novel High Temperature Alloys Based on NiAl-(Cr,Mo)

Author:

Gombola Camelia,Kauffmann AlexanderORCID,Geramifard Golnar,Blankenburg Malte,Heilmaier Martin

Abstract

Apart from the reported transition from the fibrous morphology in NiAl-34Cr to lamellae by adding 0.6 at.% Mo, further morphology transformations along the eutectic trough in the NiAl-(Cr,Mo) alloys were observed. Compositions with at least 10.3 at.% Cr have lamellar morphology while the first tendency to fiber formation was found at 9.6 at.% Cr. There is a compositional range, where both lamellae and fibers are present in the microstructure and a further decrease in Cr to 1.8at.% Cr results in fully fibrous morphology. Alongside these morphology changes of the (Cr,Mo)ss reinforcing phase, its volume fraction was found to be from 41 to 11 vol.% confirming the trend predicted by the CALPHAD approach. For mixed morphologies in-situ X-ray diffraction experiments performed between room and liquidus temperature accompanied by EDX measurements reveal the formation of a gradient in composition for the solid solution. A new Mo-rich NiAl-9.6Cr-10.3Mo alloy clearly shows this effect in the as-cast state. Moreover, crystallographic orientation examination yields two different types of colonies in this composition. In the first colony type, the orientation relationship between NiAl matrix and (Cr,Mo)ss reinforcing phase was ( 100 ) NiAl|| ( 100 ) Cr,Mo and ⟨ 100 ⟩ NiAl|| ⟨ 100 ⟩ Cr,Mo. An orientation relationship described by a rotation of almost 60° about ⟨ 111 ⟩ was found in the second colony type. In both cases, no distinct crystallographic plane as phase boundary was observed.

Funder

Karlsruhe Institute of Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3