Vapor Composition and Vaporization Thermodynamics of 1-Ethyl-3-methylimidazolium Hexafluorophosphate Ionic Liquid

Author:

Dunaev Anatoliy M.1ORCID,Motalov Vladimir B.1ORCID,Korobov Mikhail A.1,Govorov Dmitrii2ORCID,Aleksandriiskii Victor V.3,Kudin Lev S.1

Affiliation:

1. Department of Physics, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia

2. Department of Chemistry, University of Cincinnati, Cincinnati, OH 210172, USA

3. Department of Chemistry and Technology of High-Molecular Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia

Abstract

The processes of the sublimation and thermal decomposition of the 1-ethyl-3-methylimidazolium hexafluorophosphate ionic liquid (EMImPF6) were studied by a complex approach including Knudsen effusion mass spectrometry, IR and NMR spectroscopy, and quantum chemical calculations. It was established that the vapor over the liquid phase primarily consists of decomposition products under equilibrium conditions. Otherwise, the neutral ion pairs are the only vapor components under Langmuir conditions. To identify the nature of the decomposition products, an experiment on the distillation of the ionic liquid was performed and the collected distillate was analyzed. It was revealed by the IR and NMR spectroscopy that EMImPF6 decomposes to substituted imidazole-2-ylidene (C6N2H10PF5) and HF. The measured vapor pressure of C6N2H10PF5 reveals a very low activity of the decomposition products (<10−4) in the liquid phase. The absence of a significant accumulation of decomposition products in the condensed phase makes it possible to determine the enthalpy of sublimation of the ionic liquid assuming its unchanged activity. The thermodynamics of the EMImPF6 sublimation was studied by Knudsen effusion mass spectrometry. The formation enthalpy of EMImPF6 in the ideal gas state was found from a combination of the sublimation enthalpy and formation enthalpy of the ionic liquid in the condensed state. The obtained value is in good agreement with those calculated by quantum chemical methods.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3