Hydroxyalkyl Amination of Agarose Gels Improves Adsorption of Bisphenol A and Diclofenac from Water: Conceivable Prospects

Author:

Ljunggren Lennart1,Ivanova Svetlana1,Ivanov Alexander E.2ORCID

Affiliation:

1. Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-20506 Malmö, Sweden

2. VitroSorb AB, Medeon Science Park, Per Albin Hanssons väg 41, SE-20512 Malmö, Sweden

Abstract

The hydroxyalkyl amination of agarose gels was studied as an approach to improve adsorption of polyphenols and pharmaceuticals from water. Three commercially available agarose gels, Zetarose FlashFlow4, ZetaCell-CL6B and Sepharose 4B were chemically modified using tris-(hydroxymethyl)aminomethane, TRIS, and ethanolamine, EA. The adsorbed amounts of bisphenol A and diclofenac were significantly higher on TRIS- and EA-derivatives compared with the parent gels. Regarding bisphenol A adsorption on TRIS-ZetaCell-CL6B, a maximal adsorption capacity, Q max of 16 μmol/mL gel and an equilibrium dissociation constant KL of 2.7 × 10−4 mol/L were observed. Filtration of diclofenac-contaminated water through TRIS-Zetarose FlashFlow 4 resulted in a 10-fold reduction of the pollutant concentration within 64 column volumes of the effluent. The moderate binding affinity of polyphenols to TRIS- and EA-adsorbents facilitates efficient polyphenol desorption and column regeneration. The effects of TRIS- and EA-substituents in agarose gels, can be harnessed for the development of environmental adsorbents, as well as for the preparative separation of polyphenols and pharmaceuticals. We consider the physical shapes and textures of the prospective adsorbents with a particular focus on spongy macroporous cryogels. These innovative materials hold promise for future applications in liquid and air filtration.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3