A Mobile System for the On-Site Assembly of Timber Frame Components: The Development of an Agile, Low-Cost Alternative to Offsite Prefabrication

Author:

Gee Stuart,Brown Andre

Abstract

Prefabricated timber component-based systems are the most prevalent industrialised system used to build housing. Along with many other countries, the UK has invested in different types of factory-based prefabrication systems as a means of increasing productivity and enhancing quality. In more recent decades, prefabrication has become part of a series of ‘modern methods of construction’ employed for, and aimed at, delivering sustainable and efficient construction. However, certain pragmatic issues remain. The industry is cyclical, and during periods of declining resources, skills and technical development can be lost. Additionally, factory-based prefabrication requires substantial initial investment and an appropriate local workforce. To help address these issues, this paper presents the concept of an alternative method of production and assembly that takes a different approach to traditional industrialised systems that involve large investments and fixed-location factories. The proposition presented in this paper is that it is possible to design and develop a small, low cost, portable micro-factory that can be taken to a temporary location or construction site, where it can then be used to construct prefabricated closed panels. We describe the development of a working prototype, effectively a micro-factory, along with its potential advantages over a fixed facility.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference32 articles.

1. The Farmer Review of the UK Construction Labour Model: Modernise or Die: Time to Decide the Industry’s Future;Farmer,2016

2. Reversing the Decline of Small Housebuilders: Reinvigorating Entrepreneurialism and Building More House,2017

3. United Nations General Assembly, Resolution Adopted by the General Assembly on 25th September 2015. Transforming Our World: Agenda for Sustainable Developmenthttps://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E

4. Aligning carbon targets for construction with (inter)national climate change mitigation commitments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3