AI-Based Quantification of Fitness Activities Using Smartphones

Author:

Huang Junhui,Kaewunruen SakdiratORCID,Ning Jingzhiyuan

Abstract

To encourage more active activities that have the potential to significantly reduce the risk of people’s health, we aim to develop an AI-based mobile app to identify four gym activities accurately: ascending, cycling, elliptical, and running. To save computational cost, the present study deals with the dilemma of the performance provided by only a phone-based accelerometer since a wide range of activity recognition projects used more than one sensor. To attain this goal, we derived 1200 min of on-body data from 10 subjects using their phone-based accelerometers. Subsequently, three subtasks have been performed to optimize the performances of the K-nearest neighbors (KNN), Support Vector Machine (SVM), Shallow Neural Network (SNN), and Deep Neural Network (DNN): (1) During the process of the raw data converted to a 38-handcrafted feature dataset, different window sizes are used, and a comparative analysis is conducted to identify the optimal one; (2) principal component analysis (PCA) is adopted to extract the most dominant information from the 38-feature dataset described to a simpler and smaller size representation providing the benefit of ease of interpreting leading to high accuracy for the models; (3) with the optimal window size and the transformed dataset, the hyper-parameters of each model are tuned to optimal inferring that DNN outperforms the rest three with a testing accuracy of 0.974. This development can be further implemented in Apps Store to enhance public usage so that active physical human activities can be promoted to enhance good health and wellbeing in accordance with United Nation’s sustainable development goals.

Funder

European Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference26 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3