Machine Learning Framework for the Sustainable Maintenance of Building Facilities

Author:

Villa ValentinaORCID,Bruno GiuliaORCID,Aliev KhurshidORCID,Piantanida PaoloORCID,Corneli Alessandra,Antonelli DarioORCID

Abstract

The importance of sustainable building maintenance is growing as part of the Sustainable Building concept. The integration and implementation of new technologies such as the Internet of Things (IoT), smart sensors, and information and communication technology (ICT) into building facilities generate a large amount of data that will be utilized to better manage the sustainable building maintenance and staff. Anomaly prediction models assist facility managers in informing operators to perform scheduled maintenance and visualizing predicted facility anomalies on building information models (BIM). This study proposes a Machine Learning (ML) anomaly prediction model for sustainable building facility maintenance using an IoT sensor network and a BIM model. The suggested framework shows the data management technique of the anomaly prediction model in the 3D building model. The case study demonstrated the framework’s competence to predict anomalies in the heating ventilation air conditioning (HVAC) system. Furthermore, data collected from various simulated conditions of the building facilities was utilized to monitor and forecast anomalies in the 3D model of the fan coil. The faults were then predicted using a classification model, and the results of the models are introduced. Finally, the IoT data from the building facility and the predicted values of the ML models are visualized in the building facility’s BIM model and the real-time monitoring dashboard, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference47 articles.

1. Designing with Vision: A Technical Manual for Material Choices in Sustainable Construction,2000

2. Sustainable construction—The role of environmental assessment tools

3. Sustainable construction: construction and demolition waste reconsidered

4. Sustainable Building Adaptation: Innovations in Decision-Making;Wilkinson,2014

5. Strategies for Sustainable Architecture;Sassi,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3