Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE

Author:

Anyfadi Eleni-Apostolia12,Gentili Stefania3ORCID,Brondi Piero3ORCID,Vallianatos Filippos12

Affiliation:

1. Section of Geophysics-Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece

2. Institute of Physics of Earth’s Interior and Geohazards, UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research & Innovation Center, 73133 Chania, Greece

3. National Institute of Oceanography and Applied Geophysics-OGS, 33100 Udine, Italy

Abstract

Aftershocks of earthquakes can destroy many urban infrastructures and exacerbate the damage already inflicted upon weak structures. Therefore, it is important to have a method to forecast the probability of occurrence of stronger earthquakes in order to mitigate their effects. In this work, we applied the NESTORE machine learning approach to Greek seismicity from 1995 to 2022 to forecast the probability of a strong aftershock. Depending on the magnitude difference between the mainshock and the strongest aftershock, NESTORE classifies clusters into two types, Type A and Type B. Type A clusters are the most dangerous clusters, characterized by a smaller difference. The algorithm requires region-dependent training as input and evaluates performance on an independent test set. In our tests, we obtained the best results 6 h after the mainshock, as we correctly forecasted 92% of clusters corresponding to 100% of Type A clusters and more than 90% of Type B clusters. These results were also obtained thanks to an accurate analysis of cluster detection in a large part of Greece. The successful overall results show that the algorithm can be applied in this area. The approach is particularly attractive for seismic risk mitigation due to the short time required for forecasting.

Funder

Italian Ministry of Foreign Affairs and International Cooperation

European Union

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3