Abstract
The thermo–chemo–mechanical coupling on the thermal shock resistance of 20 vol%-ZrB2–15 vol%-SiC–graphite composite is investigated with the use of a self-developed material testing system. In each test, a specimen under prescribed constant tensile pre-stress (σ0 = 0, 10, 20 and 30 MPa) was subjected to 60 cycles of thermal shock. In each cycle, the specimen was heated from room temperature to 2000 °C within 5 s in an air atmosphere or an Ar atmosphere. The residual flexural strength of each specimen was tested, and the fracture morphology was characterized by using scanning electron microscopy (SEM). There were three different regions in the fracture surface of a specimen tested in the air, while no such difference could be observed in the fracture surfaces of the specimens that were tested in Ar. The residual flexural strength of the composite that was tested in Ar generally decreases with the increase of σ0. However, in the range of 0 ≤ σ0 ≤ 10 MPa, the residual flexural strength of the composite that was tested in the air ascended with the increase of σ0 due to the healing effect of oxidation, but it descended thereafter with a further increase of σ0, as the effect pre-stress that became prominent.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Chongqing
National Postdoctoral Program for Innovative Talents
China Postdoctoral Science Foundation
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献