A New Approach to Prevent Injuries Related to Manual Handling of Carts: Correcting Resistive Forces between Floors and Wheels to Evaluate the Maximal Load Capacity

Author:

Gille Stephane1ORCID,Clerc-Urmès Isabelle2ORCID

Affiliation:

1. Work Equipment Engineering Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 rue du Morvan-CS60027, 54519 Vandoeuvre-les-Nancy, France

2. Working Life Department, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), 1 rue du Morvan-CS60027, 54519 Vandoeuvre-les-Nancy, France

Abstract

Test methods that use pushing forces to evaluate the maximal load capacities of carts in design standards require a flat, smooth and horizontal steel plate and thus do not take into account the real conditions of work. Resistive forces of a single wheel of a cart in a uniform rectilinear motion were measured using a unique test bench with five loads. Forty-four wheels were tested (varying diameters, treads and bearings) with one steel plate and four resilient floor coverings. Based on a linear mixed model, all the following results were significant (p < 0.05). Resistive forces were increased linearly with the load and depended on the characteristics of both the wheel and floor. These forces decreased as the diameter increased. They were important for wheels with sleeve bearings but decreased for cone ball bearings and precision ball bearings. Resistive forces depended on the material of the tread and were higher for solid rubber treads. In contrast, the hardness of the tread had little effect. Resistive forces strongly depended on the hardness of the base foam of resilient floor coverings: the softer the base foam, the higher the resistive forces. Test methods in design standards should be reviewed, using corrective forces based on these present results, to prevent musculoskeletal disorders.

Publisher

MDPI AG

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3