Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking

Author:

Try PieterORCID,Schöllmann SteffenORCID,Wöhle LukasORCID,Gebhard MarionORCID

Abstract

People with severe motor impairments like tetraplegia are restricted in activities of daily living (ADL) and are dependent on continuous human assistance. Assistive robots perform physical tasks in the context of ADLs to support people in need of assistance. In this work a sensor fusion algorithm and a robot control algorithm for localizing the user’s mouth and autonomously navigating a robot arm are proposed for the assistive drinking task. The sensor fusion algorithm is implemented in a visual tracking system which consists of a 2-D camera and a single point time-of-flight distance sensor. The sensor fusion algorithm utilizes computer vision to combine camera images and distance measurements to achieve reliable localization of the user’s mouth. The robot control algorithm uses visual servoing to navigate a robot-handled drinking cup to the mouth and establish physical contact with the lips. This system features an abort command that is triggered by turning the head and unambiguous tracking of multiple faces which enable safe human robot interaction. A study with nine able-bodied test subjects shows that the proposed system reliably localizes the mouth and is able to autonomously navigate the cup to establish physical contact with the mouth.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive systematic review of information fusion methods in smart cities and urban environments;Information Fusion;2024-07

2. Vision-Based Object Manipulation for Activities of Daily Living Assistance Using Assistive Robot;Automation;2024-04-15

3. Design of restaurant intelligent beverage service robot based on gesture control;Third International Conference on Control and Intelligent Robotics (ICCIR 2023);2023-12-01

4. DORMADL - Dataset of Human-Operated Robot Arm Motion in Activities of Daily Living;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

5. Assistance Robotics and Sensors;Sensors;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3